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Abstract
We compute the 2n-point coupling constants in the high-temperature phase
of the two-dimensional Ising model by using transfer-matrix techniques.
This provides the first few terms of the expansion of the effective potential
(Helmholtz free energy) and of the equation of state in terms of the renormalized
magnetization. By means of a suitable parametric representation, we determine
an analytic extension of these expansions, providing the equation of state in the
whole critical region in the t, h plane.

PACS numbers: 0550, 1110, 6460

1. Introduction

Despite its apparent simplicity and the fact that for more than 50 years the exact expression
of the free energy along the h = 0 axis has been exactly known, the two-dimensional Ising
model still provides many interesting issues. Since the original Onsager solution [1], several
other exact results have been obtained for this model. In particular, closed expressions for the
two-point correlation function at h = 0 and an S-matrix solution on the t = 0, h �= 0 axis [2]
exist (for a review, see [3]). However, little is known for generic values of t and h and, in
particular, there is no exact expression for the free energy and for the critical equation of state
in the whole (t, h) plane.

In order to determine the Helmholtz free energy (also called the effective potential) and
the equation of state, we begin by computing the first terms of their expansion in powers of
the magnetization in the high-temperature (HT) phase. The coefficients of this expansion
are directly related to the n-point zero-momentum renormalized couplings gn that are also
interesting in themselves, since they summarize relevant (zero-momentum) physical properties
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of the quantum field theory that describes the Ising model in the vicinity of the critical point.
For this purpose we combine transfer matrix (TM) techniques, conformal field theory (CFT)
methods and general renormalization-group (RG) properties of critical systems. Recent
works [4, 5] have shown that a combination of these approaches can lead to very accurate
estimates of universal ratios in the two-dimensional Ising model. In this respect this paper is
the natural continuation of [5], in which the first nontrivial coupling g4 was determined with
the same techniques as used here.

Starting from the expansion of the free energy in powers of the magnetization in the HT
phase, we determine approximate representations of the equation of state that are valid in the
critical regime in the whole (t, h) plane. This requires an analytic continuation in the complex
t plane [6,7], extending the expansion valid for t > 0 to the low-temperature phase t < 0. For
this purpose, we use parametric representations [8–10], which implement in a rather simple
way the known analytic properties of the equation of state (Griffiths’ analyticity). We construct
a systematic approximation scheme based on polynomial parametric representations [7] and
on a global stationarity condition [11]. This approach was successfully applied to the three-
dimensional Ising model, leading to an accurate determination of the critical equation of state
and of the universal amplitude ratios that can be obtained from it [7, 11].

The paper is organized as follows: in section 2 we set up the formalism and define
the quantities that parametrize the free energy for small values of the magnetization. These
coefficients are evaluated numerically in section 3 by using TM techniques. In section 4 we use
a parametric representation to analytically extend this expansion to the whole critical region,
obtaining approximate, but still quite precise, expressions of the critical equation of state in the
whole (t, h) plane. Finally in section 5 we draw our conclusions. In appendix A we report our
notations for the universal amplitude ratios, in appendix B we present a detailed discussion of
the finite-size behaviour of the free energy and of its derivatives and in appendix C we explicitly
compute eh, one of the coefficients appearing in the expansion of the nonlinear scaling field
associated with the magnetic field.

2. Small-field expansion of the effective potential in the high-temperature phase

In the theory of critical phenomena continuous phase transitions can be classified into
universality classes determined only by a few basic properties characterizing the system, such
as space dimensionality, range of interaction, number of components and symmetry of the order
parameter. RG theory predicts that, within a given universality class, the critical exponents and
the scaling functions are the same for all systems. Here we consider the two-dimensional Ising
universality class, which is characterized by a real order parameter and effective short-range
interactions. A representative of this universality class is the standard square-lattice Ising
model defined by the partition function

Z =
∑
σi=±1

eβ
∑

〈n,m〉 σnσm+h
∑

n σn (2.1)

where the field variable σn takes the values {±1}, n ≡ (n0, n1) labels the sites of a square
lattice of size L0 ×L1 and 〈n,m〉 denotes a lattice link connecting two nearest-neighbour sites.
In our calculations we treat asymmetrically the two directions. We denote by n0 the ‘time’
coordinate and by n1 the ‘space’ one. We indicate by N ≡ L0L1 the number of sites of the
lattice and define the reduced temperature

t ≡ βc − β

βc
(2.2)

where βc = log (
√

2 + 1)/2 ≈ 0.440 6868 . . . is the critical point.
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We introduce the Gibbs free-energy density

F(t, h) ≡ 1

N
log(Z(t, h)) (2.3)

and the related Helmholtz free-energy density (in the field-theoretical framework usually called
the effective potential)

F(t,M) = M h − F(t, h) (2.4)

whereM is the magnetization per site. For t > 0, F(t, h) and F(t,M) have regular expansions
in even powers of h and M respectively. Explicitly

F(t, h) − F(t, 0) =
∑
n=1

1

(2n)!
χ2n(t)h

2n (2.5)

F(t,M) − F(t, 0) =
∑
n=1

1

(2n)!
χ1PI

2n (t)M2n (2.6)

whereχ2n(t) is the zero-momentum 2n-point function andχ1PI
2n (t) is its one-particle irreducible

counterpart. Note that χ2(t) = χ(t), where χ(t) is the magnetic susceptibility.
Expansion (2.6) can also be written in the equivalent forms

F(t,M) − F(t, 0) = ξ−2
2nd

(
1

2
ϕ2 +

∑
n=2

1

(2n)!
g2nϕ

2n

)
(2.7)

= −χ2

χ4

(
1

2
z2 +

1

4!
z4 +

∑
n=3

1

(2n)!
r2nz

2n

)
(2.8)

where

ϕ2 = ξ2nd(t)
2

χ(t)
M2 z2 = −χ4(t)

χ(t)3
M2 (2.9)

and ξ2nd is the second-moment correlation length

ξ2nd = 1

4χ

∑
x

x2〈s(0)s(x)〉. (2.10)

The coefficients g2n correspond to the 2n-point renormalized coupling constants and r2n =
g2n/g

n−1
4 . The couplings g2n and the related r2n can be computed in terms of χ2n and ξ2nd.

The four-point coupling is given by

g4(t) = − χ4

χ2ξ 2
2nd

. (2.11)

An explicit expression of r2n in terms of χ2n is given at the beginning of section 3.
The advantage of the expansions (2.7) and (2.8) is the fact that the coefficients have a finite

limit—in the following we indicate it by the same symbol—for t → 0. Notice that for t → 0,
z ∼ Mt−β and χ2/χ4 ∼ t2ν , so equation (2.8) defines the HT expansion of the scaling part of
the free energy F(t,M) ∼ t2νFscal(Mt−β).

3. Calculation of r2n with transfer-matrix techniques

In this section we wish to report the calculation of the first few coefficients r2n at the critical
point t = 0. It is easy to express them in terms of the critical amplitudes of the 2n-point
functions χ2n(t). Defining

C+
n = lim

t→0
χn(t) t

15n/8−2 (3.1)
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it is possible to show by direct calculation that

r6 = 10 − C+
6C

+
2

(C+
4 )

2
(3.2)

r8 = 280 − 56
C+

6C
+
2

(C+
4 )

2
+
C+

8 (C
+
2 )

2

(C+
4 )

3
(3.3)

r10 = 15 400 − 4620
C+

6C
+
2

(C+
4 )

2
+ 120

C+
8 (C

+
2 )

2

(C+
4 )

3
+ 126

(C+
6 )

2(C+
2 )

2

(C+
4 )

4
− C+

10(C
+
2 )

3

(C+
4 )

4
(3.4)

r12 = 1401 400 − 560 560
C+

6C
+
2

(C+
4 )

2
+ 17 160

C+
8 (C

+
2 )

2

(C+
4 )

3
+ 36 036

(C+
6 )

2(C+
2 )

3

(C+
4 )

4

−220
C+

10(C
+
2 )

3

(C+
4 )

4
− 792

C+
8C

+
6 (C

+
2 )

3

(C+
4 )

5
+
C+

12(C
+
2 )

4

(C+
4 )

5
. (3.5)

The aim of this section is to estimate the constants C+
2n, by using TM techniques and the exact

knowledge of several terms of the small-t expansion of χ2n(t). Using the equations reported
above, we will then obtain our estimates of r2n.

3.1. The transfer-matrix approach

We obtained our numerical estimates of the 2n-point functions χ2n(t) following a two-step
procedure. First, by using TM techniques, we obtained estimates of these quantities on lattices
of finite transverse size L1, with L1 � 24. Second, we extrapolated these results to the
thermodynamic limit by using the exact knowledge of their finite-size scaling (FSS in the
following) behaviour. To perform this second part of the analysis we have elaborated a new
extrapolation scheme, which is rather interesting in itself. We shall discuss it in detail in the
last part of this section.

Let us now look at both these steps in more detail.

3.1.1. The TM computation. This part of the procedure has already been discussed in [5].
We report here the main features of the algorithm for completeness and refer to [5] for a more
detailed discussion.

The main idea is to use TM techniques to extract the h-dependence of the magnetization
at fixed t . To this end, we computed numerically the magnetization M(t, h, L1) on lattices of
size ∞ × L1, for L1 � 24. In this paper we use again the data obtained in [5]. In addition,
we generated new data for β = 0.335 and 0.345 and added L1 = 24 results for β = 0.35 and
0.355. All computations were performed with double-precision floating-point arithmetic on
commercial workstations. Typically we obtained M with 15 correct digits.

Then, for each given value of L1 and β, we determined the coefficients of the series

h = b1M + b3M
3 + b5M

5 + · · · (3.6)

which we truncated at order M15. Using the numerical results of M for eight values of h,
we computed the coefficients b1, b3, . . . , b15. The optimal choice for these eight values of h
is the one for which the errors due to the truncation of the series and those due to numerical
rounding are of the same magnitude. This optimal range changes as a function of β and L1.
For instance, just to give an idea of the magnitude of the magnetic fields which we studied,
for β = 0.36 and L1 = 24 the best choice is h = 0.002 j with j = 1, . . . , 8. The accuracy
of the bi obtained in this way is decreasing with increasing order. For example, for β = 0.37,
we obtain b1 with 14 significant digits and, for example, b11 with only three significant digits.
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In principle we could have also used the expansion

M = a1h + a3h
3 + a5h

5 + · · · . (3.7)

However, in practice, the use of (3.7) leads to results with significantly larger truncation errors,
since, in contrast to what happens for bi , the sign of the coefficients ai alternates.

Then, for each β and L1, we constructed the χ2n functions out of the bi constants. These
are the inputs of the FSS analysis discussed in the next section. The relations between the bi
and the χ2n can be easily obtained by a straightforward calculation. We report them here for
completeness:

χ4 = −3!
b3

b4
1

(3.8)

χ6 = −5!

(
b5

b6
1

− 3
b2

3

b7
1

)
(3.9)

χ8 = −7!

(
b7

b8
1

+ 12
b3

3

b10
1

− 8
b3b5

b9
1

)
(3.10)

χ10 = −9!

(
b9

b10
1

− 55
b4

3

b13
1

− 10
b3b7

b11
1

+ 55
b2

3b5

b12
1

− 5
b2

5

b11
1

)
(3.11)

χ12 = −11!

(
b11

b12
1

+
273 b5

3

b16
1

− 364 b3
3 b5

b15
1

+
78 b3 b

2
5

b14
1

+
78 b2

3 b7

b14
1

− 12 b5 b7

b13
1

− 12 b3 b9

b13
1

)
.

(3.12)

This last step is the only difference in the present calculation with respect to the analogous
one reported in [5], where we directly studied the thermodynamic limit of the bi coefficients.
The reason is that as n increases the χ2n show a much better and smoother FSS behaviour than
the bi .

3.1.2. The thermodynamic limit. In the second step of the analysis we extrapolate our results
to the thermodynamic limit. We know on general grounds that, since L1 � ξ , the convergence
towards the thermodynamic limit of the χ2n functions is exponentially fast, the decay rates
being related to the spectrum of the theory. This result holds for any lattice model. However,
in the case of the two-dimensional Ising model, thanks to the fact that the model can be solved
exactly also on finite lattices [12] (or, in the language of S-matrix theory, thanks to the fact that
the S-matrix of the model is very simple), much more information can be obtained on the FSS
properties of the free energy and of its derivatives. In particular, one can explicitly compute
the functional form of the FSS behaviour of χ2n (see appendix B). It turns out to be

χ2n(L1) − χ2n(∞) = L
2n−3/2
1 (g2n,1(1/L1)e

−mL1

+g2n,2(1/L1)e
−2mL1 + g2n,3(1/L1)e

−3mL1 + · · ·) (3.13)

where g2n,i(1/L1) are functions of 1/L1, which can be expanded in (positive) powers of 1/L1.
By fitting our values of χ2n(L1) with this law (by expanding the functions g2n,i(L1) and

using as free parameters the coefficients of the first few terms of the expansion) it is possible
to obtain very precise estimates for the thermodynamic limit χ2n(∞). However, this is not
the most efficient strategy, since much of the information contained in the χ2n(L1) is lost in
the determination of the coefficients of the Taylor expansion of the g2n,i(L1) functions. Thus,
we have elaborated an alternative iterative procedure which is much simpler to perform than
the above multiple fits and allows us to reach higher precision (up to one additional accurate
digit). The idea behind this iterative algorithm (IA, in the following) is first to absorb the
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Table 1. Thermodynamic-limit results for χn(t) t15n/8−2, for n = 4, 6. The quoted error bars are
estimates of the systematic error of the extrapolation.

β 4 6

0.20 −3.211 114 9829(1) 61.945 049 68(2)
0.25 −3.472 139 4468(1) 74.543 748 8(1)
0.28 −3.622 540 033(1) 82.255 117 (3)
0.30 −3.720 514 859(2) 87.459 547 (5)
0.31 −3.768 883 189(5) 90.081 633 (5)
0.32 −3.816 873 86(2) 92.717 55(1)
0.33 −3.864 515 67(5) 95.367 88(5)
0.335 −3.888 215 30(5) 96.698 6(1)
0.34 −3.911 839 45(10) 98.033 2(1)
0.345 −3.935 392 2(1) 99.371 8(1)
0.35 −3.958 878 0(5) 100.714 2(2)
0.355 −3.982 300 5(10) 102.061 0(2)
0.36 −4.005 665 3(10) 103.411 9(2)
0.365 −4.028 975 (1) 104.767 3(2)
0.37 −4.052 238 (1) 106.127(1)

pre-exponential factors of equation (3.13) in the masses by allowing them to depend on L1.
Then, the resulting exponential corrections are eliminated by iteratively solving the system of
equations

χ
(i)
2n (L1 − 2) = c exp(−x(L1 − 2)) + χ

(i+1)
2n (L1)

χ
(i)
2n (L1 − 1) = c exp(−x(L1 − 1)) + χ

(i+1)
2n (L1)

χ
(i)
2n (L1) = c exp(−xL1) + χ

(i+1)
2n (L1)

(3.14)

with respect to χ
(i+1)
2n (L1), c and x.

The index i in χ
(i)
2n denotes the order of the iteration, in particular the χ

(0)
2n are the input

data of the algorithm obtained as discussed in the previous section. As i increases the L1

dependence of the χ
(i)
2n becomes smaller. After a certain number of steps the extrapolation

becomes unstable since rounding errors accumulate. Typically, the final estimate was obtained
by iterating 1, 2, 3 or 4 times, depending on β and on n. The residual dependence on L1 is
used to estimate the error in the best estimate of χ2n(∞). The results obtained in this way are
in perfect agreement with those obtained by directly fitting equation (3.13) but, as mentioned
above, turn out to be more precise. By using the IA we were able to obtain reliable estimates
of χn for n � 12 up to β = 0.37. Our results are summarized in tables 1 and 2.

In order to verify whether our method of estimating the errors with the IA method (quoted
in tables 1 and 2) is reliable we made the following test. We studied with the IA a sample of
data at a very low value of β where rather large values of L1/ξ could be reached, so that the
results for the χ2n(L1) on our largest lattices were already good estimates of χ2n(∞) with no
need of further manipulations. Then, we performed our analysis using only the data at small
L1. In this way we could explicitly check that our extrapolation scheme gives accurate results
for the thermodynamic limit starting from data such that L1/ξ ≈ 7, which is what we reached
at our largest value of β, β = 0.37. Moreover in appendix (B.3) we report a further test of IA.
We applied it to a test function of the type (3.13), finding again support for the reliability of
the method.

In order to give a feeling of the performances of the IA for β = 0.37—this is the value
of β that is nearer to the critical point among those we studied and hence the worst one
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Table 2. Thermodynamic-limit results for χn(t) t15n/8−2 for n = 8, 10, 12. The quoted error bars
are estimates of the systematic error of the extrapolation.

β 8 10 12

0.20 −2985.5224(2) 267 883. (1.) −23 211 300. (1000.)
0.25 −4002.0604(2) 400 060. (1.) −43 255 500. (1000.)
0.28 −4672.309(2) 494 203. (5.) −59 550 000. (10 000.)
0.30 −5144.20(2) 563 455. (10.) −72 400 000. (10 000.)
0.31 −5387.715(10) 600 090. (20.) −794 45 000. (30 000.)
0.32 −5636.31(2) 638 110. (50.) −86 910 000. (100 000.)
0.33 −5890.10(5) 677 600.(100.) −94 830 000. (100 000.)
0.335 −6018.9(1) 697 800.(100.) −98 950 000. (200 000.)
0.34 −6149.0(1) 718 300.(100.) −103 190 000. (200 000.)
0.345 −6280.5(2) 739 000.(500.) −107 560 000. (200 000.)
0.35 −6413.1(3) 760 600.(200.) −112 000 000. (500 000.)
0.355 −6547.1(3) 782 400.(200.) −116 600 000. (500 000.)
0.36 −6682.3(5) 804 400.(300.) −121 300 000.(1000 000.)
0.365 −6819.3(3) 827 100.(500.) −126 100 000.(1000 000.)
0.37 −6958.1(5) 850 000.(500.) −131 000 000.(1000 000.)

Table 3. Results of the IA analysis for F4 ≡ χ4t
−11/2 at β = 0.37.

L1 F
(0)
4 F

(1)
4 F

(2)
4 F

(3)
4 F

(4)
4

15 −3.726 094 189 895 19 −4.074 556 55
16 −3.803 801 470 541 99 −4.065 094 98
17 −3.863 412 992 924 73 −4.059 786 84 −4.053 002 96
18 −3.908 976 248 238 99 −4.056 753 21 −4.052 707 13
19 −3.943 703 002 436 99 −4.054 988 69 −4.052 535 35 −4.052 297 50
20 −3.970 111 049 142 28 −4.053 944 38 −4.052 430 12 −4.052 263 71
21 −3.990 156 818 700 86 −4.053 315 48 −4.052 363 36 −4.052 247 54 −4.052 232 70
22 −4.005 350 649 549 57 −4.052 930 08 −4.052 320 14 −4.052 240 75 −4.052 235 85
23 −4.016 852 788 478 50 −4.052 689 80 −4.052 291 91 −4.052 238 74 −4.052 237 89
24 −4.025 551 193 514 43 −4.052 537 44 −4.052 273 42 −4.052 238 37 −4.052 238 29

from the point of view of FSS—we have reported in table 3 the results of the first four
iterations for χ4 at β = 0.37. From these numbers we estimate the thermodynamic limit
of χ4 to be χ4(∞) = −4.052 238(1), to be compared with the result obtained by directly
fitting equation (3.13), which is χ4(∞) = −4.052 242(10).

This same IA was also used in our previous paper [5], the only difference being that in
that case it was applied to extract the thermodynamic limit of the bi constants. Let us stress,
as a final remark, that this algorithm is very general and can be used even when no exact
information is available on the FSS behaviour of the quantity of interest except from the fact
that it is dominated by an exponential decay.

3.2. Small-t expansion of χn(t)

As well known, the TM approach gives reliable results only for rather small values of β. In
order to perform the extrapolation β → βc, it is thus mandatory to have a good control of the
scaling corrections of χn(t). In this section we address this problem in detail. Our goal will
be to obtain for each χ2n the exact form of the scaling function up to O(t4) and the spectrum
of the possible scaling dimension (i.e. the exponents of the corresponding contributions in the
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scaling function) up to O(t5).
The most important information which is needed to perform this analysis is the spectrum

of the irrelevant operators of the theory. This problem was recently addressed numerically
in [13–15], where it was shown that, for rotationally invariant quantities such as the free
energy and its derivatives, the first correction due to the irrelevant operators in the square-
lattice Ising model appears at order t4 (hence no correction of order t2 is present) and that
the next irrelevant operator contributes only at order t6. This result has been shown for the
susceptibility in zero field, but a standard application of RG ideas implies that it should also
apply to the free energy as a function5 of t and h. This is also confirmed by the less precise
numerical results of [4] for the free energy on the critical isotherm and by the analytic study
of the two-point function at large distances [16].

This result allows us to determine the scaling corrections to χ2n(t) up to order t4 by using
standard RG techniques (see [5, 17, 18]).

As a first step, let us write the free energy of the model in terms of nonlinear scaling
fields [19]:

F(t, h) = Fb(t, h) + |ut |d/yt fsing

(
uh

|ut |yh/yt ,
{

uj

|ut |yj /yt
})

+|ut |d/yt log |ut |f̃sing

(
uh

|ut |yh/yt ,
{

uj

|ut |yj /yt
})

. (3.15)

Here Fb(t, h) is a regular function of t and h2, ut , uh and {uj } are the nonlinear scaling fields
associated respectively with the temperature, the magnetic field and the irrelevant operators and
yt , yh and {yj } are the corresponding dimensions. For the Ising model yt = 1 and yh = 15/8.
Notice the presence of the logarithmic term, that is related to a ‘resonance’ between the thermal
and the identity operator6. Since all numerical data indicate that for t → 0 all zero-momentum
correlation functions diverge as a power of t without logarithms—our results provide additional
evidence for this cancellation—we shall assume in the following (as in [17]) that f̃sing does
not depend on its first argument uh/|ut |yh/yt . There is also some evidence that the leading
contribution due to the irrelevant operators is absent. Indeed, for the susceptibility one would
expect a correction of order t4 log |t |, which is not found in the high-precision study of the
susceptibility reported in [15]. In the following we will be conservative and we will report
results with and without corrections of order t4 log |t |. Our final estimates assume however
that such a term is absent.

The scaling fields are analytic functions of t and h that respect the Z2 parity of h. Let us
write their Taylor expansion, keeping only those terms that are needed for our analysis (we
use the notations of [17]):

uh = h [1 + cht + dht
2 + ehh

2 + fht
3 + O(t4, th2)] (3.16)

ut = t + bth
2 + ct t

2 + dt t
3 + et th

2 + ft t
4 + O(t5, t2h2, h4). (3.17)

All these coefficients (except eh) have been determined exactly or numerically with very high
precision (see [5, 14, 18]). We list them here for completeness:

ch = βc√
2

dh = 23β2
c

16
fh = 191β3

c

48
√

2
(3.18)

5 This pattern agrees with an independent analysis, in the framework of CFT, based on the spectrum of the quasi-
primary operators of the critical Ising model. This result was already anticipated in [5] and will be discussed in full
detail in a forthcoming publication.
6 In principle, other logarithmic terms may arise from additional resonances due to the fact that yj are integers or
differ by integers from yh, and indeed they have been observed in a high-precision analysis of the asymptotic behaviour
of the susceptibility [15]. They will not be considered here since these contributions either are subleading with respect
to those we are interested in or have a form that is already included.
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ct = βc√
2

dt = 7β2
c

6
ft = 17β3

c

6
√

2
(3.19)

et = btβc

√
2 bt = − E0π

16β2
c

(3.20)

where [20]

E0 = 0.040 325 5003 . . . (3.21)

is the coefficient of the contribution proportional to t log |t | in the susceptibility.
The coefficient eh is the only term that was not reported in [5]. In appendix C we show

that it is possible to determine it by analysing the scaling corrections to the free energy on the
critical isotherm. Using the precise data of [4], we obtain

eh = −0.007 27(15). (3.22)

Using equation (3.15) and the expansions of the scaling fields reported above, we can compute
the leading terms in the asymptotic expansion of χn(t) for t → 0. We obtain

χn(t) = t2−15n/8an(t) + t19/4−15n/8bn(t) + · · · (3.23)

where

an(t) = C+
n (1 + α1βct + α2β

2
c t

2 + α3β
3
c t

3 + O(t4)) (3.24)

bn(t) = C+
n−2(ζ0 + ζ1t + O(t2)). (3.25)

The coefficients αi and ζi are given by

α1 = −7n − 16

8
√

2
(3.26)

α2 = 147n2 − 1080n + 2176

768
(3.27)

α3 = −343n3 − 5208n2 + 26 240n − 49 152

6144
√

2
(3.28)

ζ0 = E0n(n − 1)(15n − 46)π

128β2
c

(3.29)

ζ1 = −E0n(n − 1)(7n − 38)(15n − 46)π

1024
√

2βc

+ n(n − 2)(n − 1)eh. (3.30)

Plugging these coefficients into equation (3.23) we obtain the exact form of the scaling function
up to the contribution of the first irrelevant field, i.e. up to O(t4). The simplest way to use
the exact knowledge of these terms of the scaling function to extract the amplitudes C+

n is to
construct the quantity

M(n)(t) ≡ χn(t) t
15n/8−2 − bn(t)t

15n/8−19/4

an(t)
(3.31)

which has the following expansion for t → 0:

M(n)(t) = C+
n (1 + p1t

4 + p̃1t
4 log t + p2t

4.75 + O(t5)). (3.32)

The terms proportional to t4 and to t4.75 are due to the first unknown coefficients of an(t) and
bn(t) respectively. They also take into account the possible presence of irrelevant operators
contributing to order t4. The term proportional to t4 log t is the only remnant of the f̃sing term
in equation (3.15) and it is due to the irrelevant operators in f̃sing.

The constants C+
n are determined in sequence. We start by using C+

2 , which is known to
very high precision, C+

2 = 0.962 581 732 308 772 114 0443 . . . [3,14,15], to estimate C+
4 with
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a best-fit analysis of equation (3.32) with n = 4. The value of C+
4 obtained in this way is then

used as input to construct the function b6(t) which appears in equation (3.31), thus allowing us
to estimate M(6)(t). At this point, by using again equation (3.32), we obtain the best-fit value
for C+

6 and repeat the whole procedure for the next value of n.
As a consequence, in the determination of M(n)(t) there are three sources of uncertainty:

(a) The uncertainty in the TM estimates of χn(t) which we use as input of our analysis.
(b) The uncertainty in the estimate of eh and E0.
(c) The uncertainty in our best estimate of C+

n−2.

These uncertainties must be treated in different ways. (a) can be straightforwardly
propagated to M(n)(t). In contrast (b) and (c) appear as uncertainties of the whole fitting
function. To deal with them we followed the simplest (and most conservative) strategy. Let
us study as an example the uncertainty due to the error on eh. We constructed two sets of data,
M

(n)
+ (t) and M

(n)
− (t), obtained by using eh + δeh and eh − δeh respectively, and then, for each

set, we determined the best-fit values of the parameters. The difference between these results
is a conservative estimate of the error induced by the uncertainty on eh. In order to give an
idea of the size of these uncertainties, we have reported in table 5 those induced by eh in the
best-fit estimates of C+

6 .
It turns out that the errors induced by the uncertainties on C+

n−2 and E0 are always
negligible with respect to that due to eh and, what is more important, that this last one is
in any case negligible with respect to the uncertainty in the best-fit estimate, i.e. with respect
to the uncertainty due to the lack of knowledge of the higher-order correction terms. For this
reason we shall neglect the errors of type (b) and (c) in our final results.

3.3. The fitting procedure

To analyse the data we followed a procedure similar to that presented in [5]. For each set of
data we performed five different fits of M(n) using equation (3.32),

(f1) keeping C+
n and p1 as free parameters, and setting p̃1 = p2 = 0;

(f2) keeping C+
n and p̃1 as free parameters, and setting p1 = p2 = 0;

(f3) keeping C+
n , p1, and p̃1 as free parameters, and setting p2 = 0;

(f4) keeping C+
n , p1, and p2 as free parameters, and setting p̃1 = 0;

(f5) keeping C+
n , p1, p̃1 and p2 as free parameters.

In order to estimate the systematic errors involved in the determination of C+
n , we

performed for all the fitting functions several independent fits, trying first to fit all the existing
data (reported in tables 1 and 2) and then eliminating the data one by one, starting from the
farthest from the critical point. Among the set of estimates of the critical amplitudes we
selected only those fulfilling the following requirements:

(1) The reduced χ2 of the fit must be of order unity. In order to fix precisely a threshold, we
required the fit to have a confidence level larger than 30%.

(2) For all the subleading terms included in the fitting function, the amplitude estimated from
the fit must be larger than the corresponding error.

(3) If the fit contains k free parameters besides C+
n , then at least 2k degrees of freedom must

be used in the fit. This means that in fits of type (f1) and (f2) at least four data must be
used (k = 1: two parameters plus two degrees of freedom); in those of type (f3) and (f4) at
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Table 4. Best-fit estimates of the amplitudes C+
n .

p̃1 �= 0 p̃1 = 0

C+
4 −4.379 095(8) −4.379 094(6)

C+
6 125.9330(11) 125.9332(6)

C+
8 −9066.5(9) −9066.4(7)

C+
10 1216.33(80) × 103 1216.34(60) × 103

C+
12 −262 60(150) × 104 −261 75(60) × 104

Table 5. Estimates of C+
6 . In the first column we report the best-fit results for the critical amplitude

(the first error in parenthesis is that induced by the systematic errors of the input data while the
second is due to the error on eh), in the second column the number of degrees of freedom (i.e. the
number of data used in the fit minus the number of free parameters) and in the last column the type
of fit.

C+
6 d.o.f. Fit type

125.932 74(12)(0) 2 (f1)
125.932 98(5)(0) 9 (f1)

125.933 01(14)(2) 2 (f2)
125.933 89(16)(7) 7 (f2)

125.932 23(30)(1) 5 (f3)
125.933 41(15)(2) 8 (f3)

125.932 90(14)(0) 7 (f4)
125.933 69(12)(1) 9 (f4)

125.932 53(20)(2) 8 (f5)
125.932 58(7)(2) 10 (f5)

least seven data must be used (k = 2: three parameters plus four degrees of freedom). In
(f5) at least 12 data must be used (k = 3: four parameters plus eight degrees of freedom).

This last constraint is a generalization to higher values of n of the one that we proposed
in [5]. It seems to encode very well the real statistical significance of the data.

Finally, among all the estimates of the critical amplitude C+
n fulfilling these requirements

we selected the smallest and the largest ones as lower and upper bounds. We consider the
mean of these two values as our best prediction for C+

n . The values are reported in table 4. The
errors quoted in table 4 are half of the difference between the upper and lower bounds. They
seem to give a reliable estimate of the uncertainty of our results.

Let us briefly comment on these results:

(a) In table 4 we have reported in two separate columns the best-fit results with and without
the log-type contribution p̃1t

4 log t . The reason for this choice is that there are strong
numerical indications [15] that p̃1 = 0 in the Ising model. To keep our analysis as general
as possible, we report also the result with p̃1 �= 0. It is interesting to note that the estimates
of C+

n (n � 10) do not depend essentially on this choice, while the error decreases by a
factor of 1.5–2 if we assume p̃1 = 0. This seems to indicate that the fitting procedure is
stable and reliable.

(b) In the first line of table 4 we report our best-fit estimate of C+
4 , which we had already

estimated in [5] with the same techniques as used in the present paper. The only
improvement with respect to [5] is that we now also know exactly the value of eh, which
was the dominant (of order t3.75) unknown correction in [5]. It is instructive to compare
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the two estimates. In [5] we obtained, taking also into account the log-type corrections,
C+

4 = −4.379 101(9), while the present value is C+
4 = −4.379 095(8). The two results

are, as expected, fully compatible. The new one is only slightly more precise than the
previous one. The fact that the enhancement in precision is so small is due to the fact that,
by using the exact value of eh, we only improve the known small-t expansion of χn(t)

from O(t3.75) to O(t4).
(c) It is instructive to look in more detail at the results of the fits in one particular case. Let us

consider, for instance, C+
6 . The results are reported in table 5, where, for each type of fit,

we quote the two fits which correspond to the highest and lowest values of C+
6 (in quoting

the uncertainties in the best-fit estimates we also report those induced by eh, to give an
idea of their size).

The most impressive feature of this set of fits is that with only the t4 contribution besides
C+

6 (fit (f1)) one can fit all the data up to β = 0.31.
Looking at table 5, we obtain our best estimate

C+
6 = 125.9330(11). (3.33)

If we additionally assume that p̃1 = 0, i.e. we take into account only the results of the fits of
type (f1) and (f4), then we find

C+
6 = 125.9332(6). (3.34)

The estimates (3.33) and (3.34) are those reported in table 4.

3.4. Summary of the results

Using the estimates of C+
2n obtained in the previous section, we can estimate r2n by using

equations (3.2)–(3.5). We finally obtain

g4 = 14.697 323(20) (3.35)

r6 = 3.678 66(3)(2) (3.36)

r8 = 26.041(8)(3) (3.37)

r10 = 284.5(1.4)(1.0) (3.38)

r12 = 4200(320)(420). (3.39)

For each r2n we report two errors: the first one is due to the error on C+
2n, while the second one

expresses the uncertainty due to the error on allC+
2k , k < n. Note that the high precision reached

in the estimates ofC+
2n is partially lost in the estimates of r2n because of the cancellations among

the various terms in the sums. This effect is particularly important for r10 and r12.
Tables 6 and 7 compare our results with the existing data from other approaches. Our

estimates of r2n perfectly agree with those obtained analysing HT expansions. In contrast, the
Monte Carlo results for r2n of [25] are systematically larger. This could be an indication that
the finite-size scaling curves obtained in [25] are still affected by large scaling corrections.

4. The critical equation of state

4.1. General features

The basic result of the RG theory is that asymptotically close to the critical point the equation
of state may be written in the scaling form [32]

h = ∂F
∂M

∝ M|M|δ−1f (x) x ∝ t |M|−1/β (4.1)
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Table 6. Estimates of g4. We also report the existing results from the form-factor (FF) approach,
HT expansions, Monte Carlo (MC) simulations, field theory (FT) based on the ε expansion and
the fixed-dimension d = 2 g expansion, and a method based on a dimensional expansion around
d = 0 (d-expansion).

Method Ref. g4

TM + CFT (this work) 14.697 323(20)
FF [21] 14.697 5(1)
HT [22] 14.694 (2)
HT [23] 14.693 (4)
HT [24] 14.700 (17)
MC [21] 14.69(2)
MC [25] 14.7(2)
FT ε expansion [26] 14.7(4)
FT g expansion [27] 15.5(8)
FT g expansion [28] 15.4(3)
d-expansion [29] 14.88(17)

Table 7. Estimates of r2n. We also report the existing results from HT expansions, Monte Carlo
(MC) simulations and field theory (FT) based on the ε expansion and the fixed-dimension d = 2
g expansion.

TM + CFT HT [30] HT [24] MC [25] FT ε-exp [30] FT g-exp [31]

r6 3.678 66(5) 3.678(2) 3.679(8) 3.93(12) 3.69(4) 3.68
r8 26.041(11) 26.0(2) 28.0(1.6) 26.4(1.0)
r10 284.5(2.4) 275(15)
r12 4200(740)

where f (x) is a universal scaling function normalized in such a way that f (−1) = 0 and
f (0) = 1. The value x = −1 corresponds to the coexistence curve, and x = 0 to the critical
point t = 0. The function h(M, t), representing the external field in the critical equation of
state, satisfies Griffiths’ analyticity, i.e. it is regular at t = 0 for M > 0 fixed and at M = 0
for t > 0 fixed. This implies that f (x) is analytic at x = 0, and it has a regular expansion for
large x of the form

f (x) = xγ
∞∑
n=0

f∞
n x−2nβ. (4.2)

As already mentioned in the introduction, many things are exactly known for the two-
dimensional Ising model. However, there is no exact expression for the free energy and for
the critical equation of state in the whole (t, h) plane. In table 8 we report a summary of the
known results for the two-dimensional Ising model (there we consider only infinite-volume
quantities). Many of them are known exactly; for the others we report the best estimate. The
results that have not been derived in this paper have been taken from [5, 33–36].

In the following we shall determine the equation of state, starting from its expansion
for small magnetization in the HT phase. It is therefore useful to introduce a different
representation that is analytic for M → 0. Using the results of sections 2 and 3.2, in particular
equation (3.15) and the discussion following it, one may write the Helmholtz free energy as

Fsing(t,M) = at2V (z) +
A

2
t2 log |t | (4.3)
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Table 8. Critical exponents and universal amplitude ratios for the two-dimensional Ising
universality class. See appendix A for the definitions.

Critical exponents and amplitude ratios

γ 7/4
ν 1
η 1/4
β 1/8
δ 15
ω 2

U0 ≡ A+/A− 1
U2 ≡ C+

2 /C
−
2 37.693 652 01

R+
c ≡ A+C+

2 /B
2 0.318 569 39

R−
c ≡ A−C−

2 /B2 0.008 451 54

Rχ ≡ Q−δ
1 ≡ C+

2B
δ−1/(δCc)δ 6.778 285 02

w2 ≡ C−
2 /[B2(f−)2] 0.531 526 07

Uξ ≡ f +/f− 3.162 495 04
Uξgap ≡ f +

gap/f
−
gap 2

Q+ ≡ A+(f +)2 0.159 027 04
Q− ≡ A−(f−)2 0.015 900 517
Q+

ξ ≡ f +
gap/f

+ 1.000 402 074

Qc
ξ ≡ f c

gap/f
c 1.078 6828

Q−
ξ ≡ f−

gap/f
− 1.581 883 299

Q2 ≡ (f c/f +)2−ηC+
2 /C

c 2.835 5305

g4 ≡ −C+
4 /[(C+

2 )
2(f +)2] 14.697 323(20)

R+
4 ≡ −C+

4B
2/(C+

2 )
3 7.336 774(10)

r6 ≡ g6/g
2
4 3.678 66(5)

r8 ≡ g8/g
3
4 26.041(11)

r10 ≡ g10/g
4
4 284.5(2.4)

r12 ≡ g12/g
5
4 4.44(6) × 103

r14 ≡ g14/g
6
4 8.43(3) × 105

v3 ≡ −C−
3 B/(C−

2 )2 33.011(6)
v4 ≡ −C−

4 B2/(C−
2 )3 + 3v2

3 48.6(1.2)

where

z = b|M|t−β V (z) = z2

2
+
z4

4!
+ O(z6)

a = −(C+)2/C+
4 b =

[
− C+

4

(C+)3

]1/2

.

(4.4)

The constant A is related to the amplitudes of the specific heat for h → 0 defined in
equation (A.1). Indeed the analyticity of the free energy for t = 0, h �= 0, implies
A+ = A− ≡ A, and thus U0 ≡ A+/A− = 1. The presence of the logarithmic term gives
rise to logarithms in the expansions of V (z) for z → ∞. Indeed, the analyticity of Fsing(t,M)

for t = 0, |M| �= 0 implies, for large z,

V (z) = z16
∑
k=0

ckz
−8k + clog log z. (4.5)

The constant clog is easily expressed in terms of invariant amplitude ratios:

clog = 4A

a
= 4Q+g+

4 . (4.6)
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For the equation of state we have

h = ∂F
∂M

= a b t15/8 ∂V (z)

∂z
≡ a b t15/8B(z) (4.7)

where, using equation (2.8),

B(z) = z +
1

6
z3 +

∑
j=3

r2j

(2j − 1)!
z2j−1. (4.8)

For large z, using (4.5) we obtain the expansion

B(z) = z15
∑
k=0

B∞
k z−8k. (4.9)

The constant B∞
0 can be expressed in terms of invariant amplitude ratios:

B∞
0 = Rχ(R

+
4 )

(1−δ)/2 = 0.592 357(6) × 10−5 (4.10)

where we have used the numerical results of table 8. Moreover, by using equation (4.5), we
obtain

B∞
2 = clog = 4Q+g4 = 9.349 087(13). (4.11)

To reach the coexistence curve, corresponding to t < 0 and h = 0, one should perform an
analytic continuation in the complex t-plane [6, 7]. The spontaneous magnetization is related
to the complex zero z0 = |z0|e−iπβ of B(z) [7], where

|z0|2 = R+
4 ≡ −C+

4B
2/(C+

2 )
3 = 7.336 774(10). (4.12)

Therefore, the description of the coexistence curve is related to the behaviour of B(z) in the
neighbourhood of z0.

The functions B(z) and f (x) give equivalent representations of the equation of state.
Indeed, they are simply related by

z−δB(z) = B∞
0 f (x) z = |z0|x−β. (4.13)

4.2. Parametric representations

In order to obtain a representation of the critical equation of state that is valid in the whole
critical region, we need to extend analytically the expansion (4.8) to the low-temperature region
t < 0. For this purpose, one may use parametric representations, which implement in a simple
way all scaling and analytic properties [8–10]. One may parametrize M and t in terms of R
and θ according to

M = m0R
βθ

t = R(1 − θ2)

h = h0R
βδh(θ)

(4.14)

where h0 andm0 are normalization constants. The variableR is non-negative and measures the
distance from the critical point in the (t, h) plane; the critical behaviour is obtained for R → 0.
The variable θ parametrizes the displacements along the lines of constant R. The line θ = 0
corresponds to the HT phase t > 0 and h = 0, the line θ = 1 to the critical isotherm t = 0 and
θ = θ0, where θ0 is the smallest positive zero of h(θ), to the coexistence curve T < Tc and
h → 0. Of course, one should have θ0 > 1. The regularity properties of the critical equation
of state require h(θ) to be analytic in the physical domain 0 � θ < θ0. This is at variance
with what happens for the scaling functions f (x) and B(z), that are nonanalytic for x → ∞
and z → ∞ respectively. This fact is important from a practical point of view. Indeed, in
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order to obtain approximate expressions of the equation of state, one can approximate h(θ)

with analytic functions. The structure of the parametric representation automatically ensures
the correct analytic properties of the equation of state.

Note that the mapping (4.14) is invertible only in the region θ < θl , where

θ2
l = 1

1 − 2β
= 4

3
. (4.15)

Thus, the physically relevant interval 0 � θ � θ0 must be contained in the region θ < θl ,
and thus we should have θ0 < θl . In practice, since θl is a singular point of the mapping, it
is important that θl − θ0 is not too small. As we shall see, all our approximations satisfy this
condition.

The function h(θ) is odd in θ , and is normalized so that h(θ) = θ + O(θ3). Since
M = C+

2ht
−γ for M → 0, t > 0, this condition implies m0 = C+h0. Following [7], we then

replace h0 by a single normalization constant ρ in such a way that we can write

z = ρ θ
(
1 − θ2

)−β
(4.16)

B(z(θ)) = ρ
(
1 − θ2

)−βδ
h(θ). (4.17)

In the exact parametric equation the value of ρ may be chosen arbitrarily: clearly the physical
function B(z) does not depend on it. However, if we adopt an approximation for h(θ), as we
will do, the dependence of B(z) on ρ is not eliminated. One may then choose ρ to obtain an
optimal approximation.

From the function h(θ) one may calculate the scaling functions f (x), using the relations

x = 1 − θ2

θ2
0 − 1

(
θ

θ0

)−1/β

f (x) = θ−δ h(θ)

h(1)

(4.18)

and all universal amplitude ratios involving zero-momentum quantities, such as the n-point
susceptibilities (see, e.g., [11] for a list of formulae).

4.3. Polynomial approximations for h(θ)

In order to construct approximate parametric representations, we consider a systematic
approximation scheme based on polynomial approximations of h(θ) [7], i.e.

h(k)(ρ, θ) = θ +
k−1∑
i=1

h2i+1(ρ)θ
2i+1. (4.19)

The coefficients h2i+1(ρ) are functions of ρ, γ and β, and are obtained by matching the small-z
expansion ofB(z) to O(z2k−1), cf equation (4.17). This kind of approximation turned out to be
effective for the determination of the critical equation of state of three-dimensional Ising-like
systems [7, 11], and was generalized to models with Goldstone singularities [37]. In order
to optimize ρ for a given truncation h(k)(ρ, θ), we use a procedure based on the physical
requirement of minimal dependence on ρ of the resulting universal function

B(k)(ρ, z) ≡ ρ
(
1 − θ2

)−βδ
h(k)(ρ, θ). (4.20)

One may indeed prove [11] that for any truncation k there exists a solution ρk independent of
z that satisfies a global stationarity condition, i.e.

∂B(k)(ρ, z)

∂ρ

∣∣∣∣
ρ=ρk

= 0 (4.21)
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Table 9. Universal amplitude ratios obtained by taking different approximations of the parametric
function h(θ). The reported ‘errors’ are only related to the uncertainty of the corresponding input
parameters. Numbers marked with an asterisk are inputs, not predictions.

h(3) h(4) h(5)

ρ 2.065 2.027 2.018(3)
θ2
l − θ2

0 0.183 0.177 0.173
r6

∗3.678 66(5) ∗3.678 66(5) ∗3.678 66(5)
r8 24.413 ∗26.041(11) ∗26.041(11)
r10 249.11 277.1(2) ∗284.5(2.4)
r12 3513.7(2) 4066(4) 4215(49)
B(|z0|/2) 1.9621 1.9666 1.9670
B(|z0|) 37.160 41.655 42.808
B(2|z0|) 431 786 538 946 569 182
B∞

0 0.4225 × 10−5 0.5279(8) × 10−5 0.557(10) × 10−5

R+
4 7.879 7.558(2) 7.47(3)

Rχ 7.967 7.434(4) 7.23(7)
U2 48.565 44.41(3) 42.7(6)
v3 28.009 28.756(6) 29.2(2)

for all values of z.
As input parameters we use the coefficients of the small-z expansion of B(z), i.e. the

estimates of coefficients r2j obtained by TM + CFT and reported in table 7.
In table 9 we report the universal amplitude ratios derived from truncations corresponding

to k = 3, 4, 5. We will not report the results for k = 6 obtained using the available estimate
of r12, because the relatively large uncertainty on r12 induces a very large error in the results
of the k = 6 truncation. We only mention that results with k = 6 are perfectly consistent with
those obtained from the k = 5 truncation. This can be inferred from the fact that the estimate
of r12 obtained using h(5)(θ), r12 � 4215, is very close to the central value of the TM + CFT
estimate, i.e. r12 = 4200(740). As we shall see, we will obtain a much better estimate of r12

in section 4.4.
The results of table 9 are not stable as k increases, showing a systematic drift up to k = 6,

where the large uncertainty does not allow a meaningful comparison. We observe that the
results for the universal amplitude ratios B∞

0 , R+
4 , Rχ , U2 and v3 effectively converge towards

their precise estimates reported in table 8. It is also reassuring that the difference between the
exact value and the estimate obtained using h(5) is of the order of the variation of the estimates
with changing k.

4.4. Improved approximations from constrained polynomials

Although the polynomial approximations we presented in the previous section are substantially
consistent with the known results for the amplitude ratios, they do not provide an accurate
approximation of the equation of state. The convergence appears rather slow, probably
requiring the knowledge of a considerably larger number of coefficients r2j to substantially
improve the results. Here, we will present an improved approximation scheme that significantly
increases the precision of the results.

The approximation scheme can be improved by constructing constrained polynomial
approximations of h(θ) that take into account the large-z asymptotic behaviour of B(z):

B(z) = B∞
0 zδ

[
1 + O(z−1/β)

]
(4.22)

where the value of B∞
0 is reported in equation (4.10). We consider constrained polynomial
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Table 10. Polynomial approximations of h(θ) using the global stationarity condition for various
values of the truncation parameter k, cf equation (4.23). The reported expressions correspond to
the central values of the input parameters.

k ρk θ2
0 h̄(k)(θ)/[θ(1 − θ2/θ2

0 )]
2 2.011 16 1.152 78 1 − 0.208 408θ2

3 2.007 70 1.159 40 1 − 0.215 675θ2 − 0.039 403θ4

4 2.007 70 1.164 41 1 − 0.219 388θ2 − 0.041 791θ4 − 0.013 488θ6

5 2.008 81 1.169 51 1 − 0.222 389θ2 − 0.043 547θ4 − 0.014 809θ6 − 0.007 168θ8

approximations of the form

h̄(k)(ρ, θ) = θ +
k−1∑
i=1

h̄2i+1(ρ)θ
2i+1 + h̄2k+1(ρ)θ

2k+1 (4.23)

where the coefficients h̄2i+1(ρ) with i < k are determined as before, by matching the small-z
expansion of B(z) to O(z2k−1), while h̄2k+1(ρ) is fixed by requiring that

B∞
0 = ρ1−δh̄(k)(ρ, 1) = 0.592 357(6) × 10−5. (4.24)

It follows that

h̄2k+1(ρ) = ρδ−1B∞
0 − 1 −

k−1∑
i=1

h̄2i+1(ρ). (4.25)

In this approximation scheme the free parameter ρ can be still determined by requiring the
global stationarity condition (4.21). This nontrivial property is essentially due to the fact that
the constraint (4.24) is linear in the coefficients h̄2i+1. It can be proved by using arguments
similar to those employed in appendix C of [11] to show the global stationarity condition (4.21)
for the approximation scheme (4.19). In table 10, for k = 2, 3, 4, 5, we report the polynomials
h̄(k)(θ) obtained by using the global stationarity condition to fix ρ, and the central values of the
input parameters F∞

0 , r6, r8 and r10. Note the stability of the coefficients of the polynomials
with k and that the size of the coefficients decreases with the order of the polynomial. The
results for some universal quantities are reported in table 11. They are in much better agreement
with the exact results than those obtained without constraint.

In figure 1 we show the scaling function B(z) obtained from h̄(k)(ρ, θ) for k = 2, 3, 4, 5.
The convergence is good; indeed, their differences are not visible in figure 1. This allows us
to determine B(z) for all real z > 0 with a relative precision of at least a few per thousand
(the least precision is found around z � |z0| � 2.71). This fact is not trivial since the small-z
expansion has a finite convergence radius, which is expected to be |z0| = (R+

4 )
1/2 � 2.71.

Therefore, the determination of B(z) on the whole positive real axis from its small-z expansion
requires an analytic continuation, which is effectively performed by the approximate parametric
representations we have considered. We recall that the large-z limit corresponds to the critical
isotherm t = 0, so positive real values of z describe the HT phase up to t = 0. Note also the
good agreement of the results for B∞

2 (see table 11), i.e. the next-next-to-leading coefficient
of the large-z expansion of B(z), with the precise estimate given in equation (4.11).

The convergence of the polynomial representations at the coexistence curve is slower.
This can be seen by looking at the estimates reported in table 11 for universal amplitude ratios
involving quantities related to the coexistence curve, such as R+

4 , Rχ , and U2, and comparing
them with the corresponding known results reported in tables 8. They appear to (monotonically)
converge toward the correct results. The rate of convergence worsens when quantities with
more and more derivatives with respect to h are involved in the amplitude ratio, as can already
be seen by comparing the results for R+

4 and U2.
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Table 11. Universal amplitude ratios obtained from the constrained polynomial approxima-
tions (4.23) of the parametric function h(θ). The reported ‘errors’ are only related to the uncertainty
of the corresponding input parameters (they are reported only if they are larger than the last figure
shown). Numbers marked with an asterisk are inputs, not predictions.

h̄(2) h̄(3) h̄(4) h̄(5)

ρ 2.011 2.008 2.008 2.009(1)
θ2
l − θ2

0 0.181 0.174 0.169 0.164(2)
r6 3.929 ∗3.678 66(5) ∗3.678 66(5) ∗3.678 66(5)
r8 27.585 26.932 ∗26.041(11) ∗26.041(11)
r10 297.25 292.89 292.89 ∗284.5(2.4)
r12 4425.2 4385.6 4385.6 4443(16)
r14 84 387 84 029 84 029 84 305(79)
B(|z0|/2) 1.9798 1.9690 1.9675 1.9672
B(|z0|) 44.930 44.335 44.146(2) 44.05(3)
B(3|z0|/2) 8442.2 8432.7 8429.4 8427.7(5)
B(2|z0|) 604 619(6) 604 548(6) 604 524(6) 604 511(7)
B(3|z0|) 2.634 97(3) × 108 2.634 96(3) × 108 2.634 95(3) × 108 2.634 95(3) × 108

B∞
0

∗0.592 357(6) × 10−5 ∗0.592 357(6) × 10−5 ∗0.592 357(6) × 10−5 ∗0.592 357(6) × 10−5

B∞
1 0.021 893 0.021 375 0.021 198(3) 0.021 10(3)

B∞
2 9.3987 9.2611 9.2611 9.286(7)

R+
4 7.458 7.396 7.371 7.355(5)

Rχ 7.602 7.172 7.002(2) 6.90(3)
U2 45.918 42.358 40.76(2) 39.6(3)
v3 28.328 29.201 29.837(9) 30.5(2)

2.5 3.0 3.5 4.0
z
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2000

3000

4000
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6000

 k=5
 k=4
 k=3
 k=2

|z0|

Figure 1. The scaling function B(z) versus z. We report the curves obtained from the constrained
polynomial approximations (4.23) with k = 2, 3, 4, 5. Their differences are not visible.

Figure 2 shows the scaling function f (x) as obtained by the truncations k = 2, 3, 4, 5.
The accuracy of the determination of f (x) can be inferred from the convergence of the curves
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Figure 2. The scaling function f (x) versus x. We report the curves obtained from the constrained
polynomial approximations (4.23) with k = 2, 3, 4, 5.

with increasing k and the comparison with the known behaviour for x → −1 and x → +∞.
Indeed, for x → −1 we have

f (x) = bf(1 + x) + O
[
(1 + x)2

]
bf = βU2

Rχ

= 0.695 117 78 . . .
(4.26)

and for x → +∞
f (x) = f∞

0 xγ + O
(
xγ−2β

)
f∞

0 = R−1
χ = 0.147 529 94 . . . .

(4.27)

This shows that f (x) is determined with a precision of a few per cent in the whole region.
This happens also in the large-x region, which corresponds to the HT phase, and therefore to
z � 1 in F(z), essentially because f (x) is normalized at the coexistence curve, i.e. x = −1,
where our approximation is worse. For x > 0, the error on f (x) increases from 0 to 2%, the
relative error on Rχ .

Using the results of table 11 we also obtain

r12 = 4.44(6) × 103 (4.28)

r14 = 8.43(3) × 105 (4.29)

B∞
1 = 0.0211(2). (4.30)

Note that the above-reported estimate of r12 is perfectly consistent with the result obtained by
TM + CFT, i.e. r12 = 4.20(74) × 103, but much more precise.

5. Conclusions

Let us briefly summarize the main results of this paper, which presents a determination of the
equation of state of the two-dimensional Ising model in the whole (t, h) plane. The starting
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point of the analysis was the determination of the 2n-point couplings constants in the HT phase,
which are related to the expansion of the free energy in powers of the magnetization. These
quantities were then used as input parameters for a systematic approximation scheme, which
allowed us to obtain an accurate determination of the equation of state in the critical regime in
the whole (t, h) plane.

The determination of the coefficients r2j of the small-magnetization expansion of the
Helmholtz free energy is in itself an interesting and nontrivial problem. We addressed this
problem by using TM techniques. In order to overcome the typical problem of all TM
calculations, i.e. the fact that they are constrained to rather small values of the lattice size
in the transverse direction (in our case we could reach L1 = 24 as a maximum value) we used
a two-step strategy:

(1) In the first step we studied the model at very small values of β so as to have small values
for ξ (whose maximum value was ξ = 3.350 288 . . . , which was reached for the largest
value of β that we studied: β = 0.37) and thus large values of the ratio L1/ξ . We then
extrapolated to the thermodynamic limit the TM results by using a new effective iterative
algorithm. This algorithm is rather interesting in itself and could be of general utility for
those working with TM methods.

(2) Second, we used a combination of standard RG results and a set of high-precision
numerical information on the zero-field magnetic susceptibility to construct the scaling
functions for the derivatives of the free energy involved in the construction of the r2j

coefficients. With these scaling functions we could obtain the critical-limit values of the
r2j coefficients with rather small errors even if the input data for this continuum-limit
extrapolation correspond to rather small values of β.

The expansion of the free energy in powers of the magnetization in the HT phase was then
used as a starting point to construct approximate representations of the equation of state that are
valid in the critical regime of the whole (t, h) plane. We considered a systematic approximation
scheme based on polynomial parametric representations, devised to match the known terms
of the small-magnetization expansion and the large-magnetization behaviour of the Helmholtz
free energy. A global stationarity condition was used in order to optimize the polynomial
approximation. This approximation scheme can be improved systematically by considering
higher- and higher-order polynomials. It is only limited by the number of known terms in
the small-magnetization expansion of the free energy. The knowledge of this expansion up to
tenth order allowed us to obtain an accurate determination of the critical equation of state. We
indeed obtained the scaling function B(z), cf equation (4.7), for all real z > 0 with a relative
precision of at least a few per thousand, and the scaling function f (x), cf equation (4.1),
with a precision of a few per cent in the whole physical region x � −1. The approximation
scheme is systematic, thus this precision can be improved by a more accurate knowledge of
the small-magnetization expansion of the free energy in the HT phase.

The method that we used to reconstruct the equation of state from the small-magnetization
expansion of the Helmholtz free energy is general and can be applied to other statistical models.
We mention that similar methods have been successfully applied to the three-dimensional
Ising [7, 11] and XY universality [37, 38] classes, leading to accurate determinations of the
critical equation of state and of the universal ratios of amplitudes that can be extracted from it.
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Appendix A. Notations for the amplitudes

Universal amplitude ratios characterize the critical behaviour of thermodynamic quantities
that do not depend on the normalizations of the external (e.g. magnetic) field, order parameter
(e.g. magnetization) and temperature. Amplitude ratios of zero-momentum quantities can be
derived from the critical equation of state. Beside the amplitudes C+

n of the n-point functions
χn(t) defined in equation (3.1) and the corresponding ones C−

n in the low-temperature phase,
we consider amplitudes derived from the singular behaviour of the specific heat

CH = A± ln(1/|t |) (A.1)

and the spontaneous magnetization on the coexistence curve

M = B(−t)β . (A.2)

We complete our list of amplitudes by considering the second-moment correlation length

ξ2nd = f ±|t |−ν (A.3)

and the true (on-shell) correlation length, describing the large-distance behaviour of the two-
point function,

ξgap = f ±
gap|t |−ν . (A.4)

One can also define amplitudes along the critical isotherm, for example

χ = Cc|h|−γ /βδ (A.5)

ξ = f c|h|−ν/βδ (A.6)

ξgap = f c
gap|h|−ν/βδ. (A.7)

Appendix B. Finite-size scaling of the free energy

Before starting the discussion on the FSS in the Ising model, let us stress that the analysis
reported in this appendix is only a straightforward application of results which are already
well known in the literature. They can be found for instance in [39] and are based on the
results of [40] and on the exact solution of the Ising model on a finite lattice obtained by
Kaufman [12]. We decided to write it down in this appendix all the same so as to make this
paper as self-contained as possible. We shall use the same notations as [39] to simplify the
comparison. This means in particular that we shall use the letter R to denote the finite size of
the lattice in the transverse direction, which is denoted in the rest of the paper by L1.

The aim of this appendix is to obtain the explicit form of the FSS of the free energy of the
Ising model on a rectangular lattice of sizeR×∞, which is exactly the geometry we considered
in our TM work. To obtain this result we shall work in the framework of the S-matrix approach
to two-dimensional integrable models and shall in particular use the so-called thermodynamic
Bethe ansatz (TBA). In the TBA one looks at the theory defined on an infinitely long cylinder
with circumference R. The only free parameter of the theory is r ≡ mR where m is the lowest
mass of the model. The goal is to extract the behaviour of the free energy E0(R) and of the
lowest mass m(R) (and possibly, in models more complicated than the Ising one, of higher
massive states) as a function of R. The geometry of the TBA is exactly the one which we have
in our TM setting. The parameter r is the ratio L/ξ in our notations and the only thing that
we must require to compare our findings with the TBA analysis is that we should be in the
‘scaling region’, i.e. that ξ � 1 so that we may neglect the lattice artefacts.

The TBA results depend on the entries of the S-matrix. They are in general very
complicated. Thus it is usually impossible to find the exact FSS functions for any value of r
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(one has usually to resort to perturbative expansions for small or large values of r). However,
the thermal perturbation of the Ising model is so simple (the S-matrix is simply S = −1 as a
consequence of the fact that the model can be mapped to a free massive field theory) that in
this case the explicit expression for any value of r can be obtained.

Appendix B.1. Free energy at h = 0

The TBA prediction for the FSS behaviour of the free energy, in the HT phase of the two-
dimensional Ising model at h = 0, is7

F(R) = F(∞) − π c(r)

6R2
(B.1)

where, following the standard TBA machinery (see p 668 of [39]), c(r) is given by

c(r) = 6

π2

∫ ∞

0
dθ r cosh(θ) ln(1 + e−r cosh θ ). (B.2)

The integral can be exactly evaluated and gives

c(r) = 6r

π2

∞∑
k=1

(−1)k−1

k
K1(kr) (B.3)

where K1 is the modified Bessel function of the second kind.
The normalization of equation (B.1) could seem strange, but it is chosen such that in the

r → 0 limit (i.e. at the critical point) the function c(r) exactly becomes the central charge of the
Ising model c = 1/2. The idea behind this choice is the so-called c-theorem of Zamolodchikov,
which states that the FSS of any two-dimensional integrable model can be parametrized by
equation (B.1), where c(r) is a ‘running central charge’, which interpolates in general between
two critical points and, in this case, between the central charge of the Ising model and the value
c(∞) = 0, which is the appropriate one for a massive theory.

The limit in which we are interested is r � 1. In this limit, we can use the asymptotic
expansion for the Bessel functions and equations (B.1), (B.3) become

F(R) = F(∞) −
√

m

2πR3

∞∑
k=1

e−mkR (−1)k−1

k
√
k

(1 + · · ·) (B.4)

where the dots stand for the o(1) terms.

Appendix B.2. Derivatives of the free energy at h = 0

Since we are interested in the derivatives with respect to h of the free energy, we must try to
extend equation (B.4) in the h �= 0 plane. It is quite reasonable to assume that in (B.4) the h

dependence can only be hidden in the mass term. Moreover, we know from [41, 42] that this
dependence (for small values of h) is well described by an analytic even function of h, i.e.

m(h) = m(1 + a h2 + b h4 + · · ·) (B.5)

with a and b unknown constants.
Inserting this expression in equation (B.4) and performing the derivatives we find

χ2n(R) − χ2n(∞) = R2n−3/2(g2n,1(1/R)e
−mR + g2n,2(1/R)e

−2mR + g2n,3(1/R)e
−3mR + · · ·)

(B.6)

where the g2n,i(1/R) may be expanded in positive powers of 1/R (whose coefficients could
be in principle computed as functions of a, b and m). This is the expression quoted in the text
as equation (3.13).
7 Notice that in [39] the authors study, instead of the free energy F(R), the quantity E0(R) that is related to F(R)

by E0(R) = R[F(R) − F(∞)].
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Table 12. Results of the IA (3.14) applied to the test function E(ξ = 4, R), cf equation (B.7).

R E(0) E(1) E(2) E(3) E(4)

12 1.002 919 604
13 1.003 825 6116
14 1.004 110 3404 1.004 240 8301
15 1.004 027 2017 1.004 045 9912
16 1.003 741 3786 1.004 144 4428 1.004 111 3946
17 1.003 358 1849 1.004 866 2118 1.004 030 4410
18 1.002 942 8048 1.008 303 4836 1.003 952 5998 1.002 005 7776
19 1.002 533 8931 0.976 683 1739 1.005 203 2241 1.004 025 8799
20 1.002 152 8510 0.996 943 1584 0.989 031 3495 1.004 042 3723 1.004 042 5080
21 1.001 810 0907 0.998 741 1366 0.998 916 2382 0.995 166 3087 1.004 025 9105
22 1.001 509 2173 0.999 348 0457 0.999 657 2961 0.999 717 3548 0.998 174 8024
23 1.001 249 7886 0.999 625 8634 0.999 860 3960 0.999 937 0740 0.999 948 2199
24 1.001 029 1081 0.999 772 2737 0.999 935 3998 0.999 979 3168 0.999 989 3714
25 1.000 843 3668 0.999 855 9476 0.999 967 5467 0.999 991 6598 0.999 996 7552
26 1.000 688 3533 0.999 906 3496 0.999 982 7009 0.999 996 2157 0.999 998 8812
27 1.000 559 8763 0.999 937 8507 0.999 990 3522 0.999 998 1547 0.999 999 5914
28 1.000 454 0024 0.999 958 0850 0.999 994 4245 0.999 999 0581 0.999 999 8462

Appendix B.3. A test of the iterative algorithm for the infinite-volume extrapolation

In order to further check the IA (3.14) for the infinite-size extrapolation, we apply it to a test
function of the type (B.6). We consider the function

E(ξ, R) = 1 +
π

6R2

∂4c(r)

∂h4

∣∣∣∣
h=0

(B.7)

where c(r) is the function defined in equation (B.3) and

r = R

ξ

(
1 + h2 + h4

)
. (B.8)

Clearly, for R → ∞, E(ξ,∞) = 1. We compute E(ξ, R) for finite values of R in the typical
range of our TM calculations, i.e. 3 � R/ξ � 7, and apply the IA (3.14) to determine the
E(ξ,∞). The comparison with the exact value gives an idea of the effectiveness of the method.
Table 12 shows the results of the IA (3.14) for ξ = 4, analogously to table 3 for F4. We report
the results for various iteration levels (up to four); the level zero corresponds to the original
data. In order to obtain from table 12 an estimate E(ξ,∞), we follow the same strategy used
in section 3.1.2, i.e. we consider the largest value of R and four iterations of the IA. The error
is estimated from the residual dependence on R of the results obtained with four iterations
of the algorithm. We obtain E(ξ = 4,∞) = 1.000 000(1), which is in perfect agreement
with the exact number. Analogous results are obtained for other values of ξ . This confirms
the effectiveness of the procedure we used to perform the extrapolation to the thermodynamic
limit, and the reliability of the uncertainty we considered.

Appendix C. Determination of eh

In this appendix we present the determination of eh. We will obtain it by analysing the scaling
corrections to the free energy in the presence of a magnetic field h on the critical isotherm
t = 0. The scaling corrections for h → 0 have been determined in [4]. Using the notation
of [4], we have, cf equation (84) of [4],

F(0, h) = fb + Al
f |h| 16

15 (1 + Al
f,b|h| 14

15 + Al
f,1|h| 16

15 + Al
f,2|h| 22

15 + Al
f,3|h| 30

15 + · · ·). (C.1)
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Each of these amplitudes has a precise physical meaning. Let us look at them in detail:

fb denotes the bulk contribution to the free energy and can be obtained from the exact solution
of the Ising model on the lattice at the critical point. Explicitly fb = 2

π
G + 1

2 log 2, where
G is Catalan’s constant.

Al
f is the amplitude of the singular part of the free energy. It can be evaluated exactly in the

framework of the S-matrix approach to the model. Its value is Al
f = 0.992 7995 . . . [2,4].

Al
f,b is the first correction (proportional to h2) due to the bulk part of the free energy. It can be

related to the constant term D0 = −0.104 133 245 . . . [43] appearing in the expansion in
powers of t of the susceptibility ath = 0. Its value isAl

f,b = D0/(2Al
f) = −0.052 4442 . . .

Al
f,1 is due to the T T̄ , T 2 and T̄ 2 irrelevant operators in the Hamiltonian. This amplitude

turns out to be compatible with zero [4].
Al

f,2 is due to the bth
2 term in ut .

Al
f,3 is due to the ehh

2 term in uh.

In principle one could use the TM data to estimate all these constants. In practice this
procedure works only for the first unknown amplitude. All the higher ones are then ‘shadowed’
by the first.

The problem with eh is that it appears at a rather high level. In [4] we were able to fix
exactly the amplitudes only up to Al

f,1. The first unknown one was Al
f,2, which was then

estimated numerically, obtaining

0.020 < Al
f,2 < 0.022. (C.2)

It was impossible to give any reliable estimate for Al
f,3. The main progress of the present paper

with respect to that analysis is that, thanks to the exact calculation of bt performed in [5, 14],
we are now in a position to estimate exactly also Al

f,2. A direct calculation gives

Al
f,2 = Al

EπE0

Al
f8βc

(C.3)

where Al
f was defined above, E0 is given by equation (3.21) and Al

E is defined by the singular
behaviour of the internal energy, i.e. Eint(t = 0, h) = 1

2∂F/∂β = Ebulk + Al
Eh

8/15 + · · ·
Numerically, Al

E = 0.580 51 . . . [4, 44]. Substituting in equation (C.3), we find

Al
f,2 = 0.021 0115 . . . (C.4)

in perfect agreement with the estimate of [4].
Substituting in equation (C.1), we may now estimate numerically the amplitude Al

f,3,
which is related to eh by

Al
f,3 = 16

15eh. (C.5)

A standard application of the fitting procedure discussed in [4], using as input data those
reported in table 10 of [4], gives

eh = −0.007 27(15). (C.6)
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